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A three-dimensional (3-D) mesh embedding algorithm for the Navier-Stokes equa- 
tions is presented. An upwind control volume discretization is used to maintain 
accuracy and stability at the embedding interfaces. With minor restrictions on cell 
shape, fluxes are also conserved across the interfaces. The hanging nodes on the 
interfaces are treated implicitly to avoid internal boundaries in the flow that would 
degrade the rate of convergence. The embedded mesh solver is used to model 90 
and 30 ° cylindrical film-cooling holes ingesting f low from a parallel-sided duct at 
low-, medium- and high-suction ratios. Adaptation of the mesh to the flow solution 
is used to improve the resolution of high-gradient regions. The influences of the 
inclination angle and suction ratio on the flow and heat transfer in the vicinity of the 
hole and on the hole discharge coefficient are modelled and compared with re- 
ported experimental measurements. 
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Introduction 

Turbine entry temperatures (TET) in modern gas turbine engines 
are typically 150°K above the melting point of the blade material. 
Consequently, cooling of the blade is necessary if the turbine is 
to have a useful working life. Arrays of film-cooling holes that 
release cool air, bled from the compressor, onto the blade surface 
are commonly used to control surface temperatures and heat 
fluxes. As turbine designers strive for higher TET, it is ever more 
important that film-cooling hole designs achieve their target 
thermal performances. 

Numerical modeling plays an important role in film-cooling 
design through the use of two-dimensional (2-D) or quasi-three- 
dimensional (3-D) boundary-layer analysis methods (e.g., Norton 
et al. 1990). These methods are intended for parametric design 
studies and model only the laterally averaged behaviour of the 
film-cooling rows. More detailed analyses of the 3-D flow within 
and around film-cooling holes have concentrated on jets injecting 
into a cross-flow. Bergeles et al. (1978) modelled a single jet 
using a semi-elliptic procedure above and immediately down- 
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stream of the hole, coupled with a marching procedure elsewhere. 
The key aspect of their calculations was the use of a nonisotropic 
form of the high Reynolds number k-~ model, which improved 
the predictions of film-cooling effectiveness. White (1980) mod- 
elled a single jet using separate computations in the pipe and 
cross-flow duct, which were iteratively linked at the jet exit 
plane. White also used a nonisotropic k-~ model to improve the 
predictions of the velocity profiles downstream of the hole. 
White, among others, demonstrated the need for an elliptic 
procedure within and downstream of the hole to model the strong 
recirculations at higher injection rates. To reduce computational 
resources, a number of models have used "locally elliptic" 
procedures in the near-injection region coupled with marching 
procedures away from the hole (e.g., Demuren et al. 1985; 
Dibelius et al. 1990). Alvarez et al. (1993) reported fully elliptic 
calculations for a single jet in cross-flow using both the isotropic 
k-e model with wall functions and a second-moment closure 
model. Alvarez concluded that overall both models gave a similar 
level of agreement with the measurements. 

The measurements of Andreopoulus and Rodi (1984) demon- 
strated the biasing of the jet exit flow to the downstream side of 
the hole and, hence, the importance of including the pipe in the 
calculations. Such calculations generally assume either plug or 
fully developed flow at the pipe entrance. However, in turbine 
cooling applications, the pipe is fed from internal cooling pas- 
sages that produce complex flow patterns at the pipe entry. 
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Numerical modelling of the entrance flows to film-cooling holes 
has received much less attention than has exit flows. Leylek and 
Zerkle (1993) modelled both the entrance and exit flows to a jet 
pipe using a plenum to feed the pipe and demonstrated the 
development of very strong secondary flows within the pipe. The 
modelling of film-cooling holes on turbine blades also introduces 
the need for flexible grid systems. Meshes adopting a single 
structured style throughout the domain incur large overheads in 
node numbers, because the grid lines needed to resolve the holes 
extend all the way to the domain boundaries and provide exces- 
sive mesh resolution where it is not needed. Benz et al. (1993) 
modelled two leading-edge film-cooling holes (slots) on a 2-D 
turbine blade using a multizone grid. H-meshes within the holes 
were attached to an O-mesh around the blade using periodic 
boundary conditions. Choi (1993) modelled a row of film-cooling 
holes on the suction side of a turbine blade using a 3-D slice of 
the blade that contained a single hole. Separate overlapping 
meshes were used for the external flow and the flow within and 
near the hole. The Chimera scheme of Steger et al. (1983) was 
used to communicate information between the meshes. 

The present contribution extends the mesh-embedding algo- 
rithm of Lapworth (1993) to provide a flexible grid system for 
film-cooling holes. The grid system uses a single nonoverlapping 
mesh with internal embedding interfaces that allow a locally fine 
resolution in the vicinity of the hole. The goal of the numerical 
model is the calculation of multiple film-cooling holes on 3-D 
turbine blades, including the internal cooling passages. Mesh 
embedding is a key tool for keeping node numbers within 
acceptable computing limits and for ensuring optimal mesh reso- 
lution through solution adaptation. However, the resolution of 
individual holes is likely to remain relatively sparse, and, hence, 
the high Reynolds number k-e model with wall functions has 
been chosen for the numerical model. The authors acknowledge 
that this model is unlikely to give the most accurate predictions. 
Our aim is to develop a flexible 3-D mesh-embedding technique 
and establish whether it provides solutions of sufficient accuracy 
to be of use in the engineering design environment. The present 

study considered only isotropic turbulence, the importance of 
anisotropic diffusivities is recognized and planned for future 
study. In this paper, mesh embedding is used to model the 
entrance flows to a single 100-times engine scale hole ingesting 
air from a parallel-sided duct, as investigated experimentally by 
Byerley (1989). The flow field and heat transfer are modelled for 
two hole inclination angles (30 and 90 ° ) and for low, medium, 
and high suction ratios. The mesh-embedding technique is pre- 
sented in the next section. This is followed by the numerical 
model and a discussion of the treatment of the internal embed- 
ding interfaces. The application of the numerical model to film- 
cooling entrance flows is then described. This is followed by the 
numerical results, which are compared to the experimental mea- 
surements. Finally, conclusions are drawn from the study. 

Embedded mesh model 

Mesh structure 

The flow domain is covered with a single, nonoverlapping, 
curvilinear H-style mesh that contains locally embedded fine 
mesh regions. The embedded regions are created by a cell 
subdivision process that divides cells in any of one, two, or three 
of the mesh directions (Figure 1 shows a cell that has been 
divided in two of the three mesh directions). Any number of cells 
can be selected for subdivision, and there is no constraint that the 
embedded regions form well-defined blocks. Three criteria are 
available for deciding which cells to subdivide. 
(1) Geometric embedding: The mesh cells adjacent to a wall can 

be successively refined in the direction normal to the wall 
until a desired near-wall spacing is achieved. 

(2) Block embedding: User-defined regions of the mesh can be 
refined in one or more directions. 

(3) Solution adaptation: Cells where some measure of the solu- 
tion accuracy is greater than a specified threshold are refined 
in the appropriate direction. The numerical model can adapt 

Notation 

a discrete coefficient matrix 
b discrete source term 
cl, c 2, c~ coefficients in k-e equations 
_C" discrete continuity operator 
C p discrete pressure gradient operator 
C d hole discharge coefficient 
cp specific heat at constant pressure 
D film-cooling hole diameter 
dS area of cell face 
G generation of turbulent kinetic energy 
H enthalpy 
I linear interpolation operator 
k turbulent kinetic energy 
L mixing length 
Nu H Nusselt number based on duct height 
Pr Prandtl number 
P0 stagnation pressure 
p static pressure 
R gas constant 
Re H Reynolds number based on duct height 
T temperature 
u velocity 
x Cartesian coordinates 

Greek 

ct 

~ i j  
E 

tx 

P 
O" 

T 

~p 
A V  

Subscripts 

cl 
i , j  
i 
l 
t 
H l, . . . ,  H8 
N1 . . . . .  Ns 
k, e 
0 
1 
2 

hole inclination angle 
Kronecker delta 
turbulent dissipation rate 
viscosity 
density 
Prandtl number 
viscous shear stress tensor 

general transported variable 
cell volume 
adaptation parameter 

centerline value 
tensor components 
element in discrete difference stencil 
laminar property 
turbulent property 
hanging node values, Figure la 
regular node values, Figure la 
property associated with k-e model 
stagnation property 
upstream reference location at duct inlet 
film-cooling hole exit location 
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Interpolation points: 
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(a) Nodal Connectivity 
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Cells Sharing Node: 
MSRN(H3) = (FI.C1,F2.C1, 

F3.C1,F4,C1) 

Catlwise Neighbours: 
NGBC(C1) = (D1,*,*,C2,*,*) 
NGBC(F4) = (*,-C1 ,F3,C3,F2,*) 

Cells Shadng Dummy Index: 
MSRD(D1) = (Ff,F2,F3,F4) 

* denotes a cell not included in this 
figure 

See la  for position of H3 

(b) Cell Connectivity 

Figure 1 Embedded mesh data structures: (a) nodal connec- 
t iv i ty arrays; (b) cell-wise connectivi ty arrays 

on first- and second-order differences (or gradients) of the 
flow variables. Adaptation may be restricted to cells greater 
than a given size to avoid excessively fine cells being 
created; for example, to ensure near wall cells remain within 
the logarithmic region of the boundary layer. 

Mesh embedding produces internal interfaces in the mesh 
where hanging nodes are used to facilitate the transition between 
the coarse and fine regions. Values at the hanging nodes are set 
by linear interpolation, as discussed in the Control volume up- 
w i n d i n g . . ,  section. 

Data structure 

The cell divisions are applied recursively, beginning with a 
structured H-mesh that has only a coarse resolution of the flow 
domain. This gives the embedded mesh a background structure, 
which means that if all the hanging nodes are eliminated by 
extending the mesh lines to the domain boundaries, a single 
structured H-mesh is recovered. This is referred to as the back- 
g round  f ine  mesh  and is the mesh that would be needed to 
perform the computations if the mesh-embedding model were not 
used. The background fine mesh provides each node in the 
embedded mesh with a unique i, j, k triplet that identifies its 
position. The nodes are also given a unique index in a sequential 
list of all the nodes. It is the latter index that is used to identify 
the nodes in the discretization scheme - -  the background i, j, k 
triplet is only used to compute the mesh connectivity arrays and 
for diagnostic output. 

The background i, j ,  k triplets by themselves are insufficient 
to define the mesh connectivity. The necessary additional infor- 
mation is contained in the array L T R ( n ) ,  which indicates the 
presence or absence of neighbours to node n in each of the mesh 
directions: L T R ( n )  = (i-neighbour indicator, j-neighbour indica- 
tor, k-neighbour indicator). The neighbour indicators are each set 
to one of - 1 ,  0, + 1, w i t h -  1 indicating that the neighbour in 
the - v e  mesh direction is absent; + 1 indicating that the + ve 
neighbour is absent; and, 0 indicating that both neighbours are 
present. The mesh structure does not allow a node to have both 
neighbours absent in the same mesh direction. Typical values of 
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LTR at two hanging nodes are shown in Figure la. At nonhang- 
ing nodes, LTR = (0, O, 0). 

The values of L T R  and the background (i, j, k) triplet for 
each node completely define the structure of the embedded mesh 
- -  this information together with the node coordinates is all that 
is passed from the mesh generator to the flow solver. However, 
to simplify the numerical discretizations, the flow solver gener- 
ates a set of connectivity arrays. These arrays are: 

(1) N G B N  - -  list of direct nodal neighbours in each mesh 
direction; 

(2) N G B H  - -  list of nodal neighbours for hanging node 
interpolations; 

(3) N S R M  - -  list of nodal vertices for each cell; 
(4) N G B C  - -  list of direct cell-wise neighbours in each mesh 

direction; 
(5) M S R N  - -  list of cells touching each node; 
(6) M S R D  - -  list of cells sharing each dummy cell index; 

and 
(7) I C F N  - -  list of nodes in convection-diffusion equation 

difference stencil. 
The first six of these arrays are illustrated in Figures la and b. 

To reduce unstructured array handling, the connectivity arrays 
have fixed dimensions. For example, the array N G B N  has stor- 
age for six neighbours (two in each direction) at all nodes, 
independently of how many neighbours are actually present. At a 
hanging node, N G B N  is set to - 1  at those neighbours that are 
absent. Typical values of N G B N  are shown in Figure la. At 
hanging nodes, the most important neighbours are those used to 
interpolate linearly for the hanging node properties. These are 
stored in the array N G B H .  The interpolation uses values at the 
four vertices of the face for face-centered hanging nodes, and the 
values at the two ends of the edge for edge-centered nodes. 
N G B H  stores four neighbours for all hanging nodes - -  at 
edge-centered nodes, each neighbour is stored twice. Hence, the 
interpolation weights can be set to 0.25 independently of the 
hanging node position. At edge-centered nodes, the weights 
automatically increase to 0.5, because each neighbour is counted 
twice. Typical values of N G B H  are shown in Figure la. 

The structure of N G B H  highlights an important aspect of the 
embedded-mesh model. Namely, neighbouring cells can only 
differ by at most one generat ion in the cell division process. 
Each cell edge or face may contain no more than one hanging 
node, which must lie strictly at its geometric centre. Because the 
values at hanging nodes are set by linear interpolation, the 
properties within a cell on the coarse side of the interface can be 
obtained solely from the values at the cell's eight vertices using 
the same linear interpolation rules. The number and location of 
the hanging nodes is immaterial, and no special interpolation 
treatments are required. The indices of a cell's eight vertices are 
stored in the array N S R M ,  as illustrated in Figure la. In addition, 
the inuerse of N S R M  is stored in the array M S R N ,  which 
contains the eight cells that share the given node as a vertex. At 
nonhanging nodes, the eight cells sharing a node are unique. 
Hanging nodes are surrounded by fewer than eight cells, with the 
cells on the coarse side inserted more than once into M S R N ,  as 
shown in Figure lb. 

To evaluate certain flux contributions, it is necessary to find 
the cells on either side of a cell face. This information is 
available from the array N G B C ,  which contains a cell's neigh- 
bours in each mesh direction. At an embedding interface, the cell 
on the coarse side has multiple neighbours on the fine side. 
However, because N G B C  can only store one neighbour in each 
direction, the fine side cells are allocated a dummy index, which 
is stored in N G B C .  A further array M S R D  identifies the fine side 
cells, which share the dummy index. The dummy indices are 
easily identified, because they are appended to the list of all cells 
and, hence, have values greater than the total number of cells. 
The cells on the fine side of an interface share a unique coarse 
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Heirarchy Violated Heirarchy Satisfied 

(a) 

i 

(b} 

(c) 

Figure 2 Embedded mesh hierarchy constraints: (a) adjacent 
cells must differ by no more than one generation; (b) cells 
cannot be simultaneously on the fine and coarse sides of an 
interface; (c) nonhanging nodes cannot lie on an interface 

side neighbour whose index is multiplied by - 1  before it is 
stored in NGBC. At boundary cells that do not have neighbours 
in a given direction, NGBC is set to 0. Hence, NGBC contains 
all the information needed to decide whether a given cell is on 
the coarse or fine side of an interface or away from any inter- 
faces. Typical values of NGBC and MSRD are shown in Figure 
lb. 

The difference stencil for the convection-diffusion operator is 
stored in the array ICFN; this is will be discussed in the 
Numerical discretization scheme section. The preceding connec- 
tivity arrays provide efficient look-up tables for the nodal and 
cellwise indices needed in the discretization scheme. Searching 
for neighbours is avoided except in the initial calculation of the 
connectivity arrays. Here, searches are carded out along the mesh 
lines of the background fine mesh using LTR to decide when to 
terminate a search. 

Hierarchical constraints on the cell divisions 
The preceding data structure places certain hierarchical con- 
straints on the mesh-embedding algorithm. These are illustrated 
in Figure 2. The first constraint prevents cells on the fine side of 
an interface being further divided unless the coarse side cell is 
also divided (Figure 2a). Otherwise, neighbouring cells would 
differ by more than one generation. The second constraint pre- 
vents neighbouring cells being refined in conjugate directions 
(Figure 2b). Otherwise, a cell is simultaneously on the fine side 
of an interface in one orientation and on the coarse side in the 
conjugate orientation. The third constraint prevents diagonally 
adjacent cells being refined in the same direction without their 
neighbours also being refined (Figure 2c). Otherwise, the node 
highlighted in the figure has a full set of neighbours (LTR = 
(0, 0, 0)) and, hence, is not classed as a hanging node but 
nevertheless lies on an embedding interface. 

Any violations of the hierarchy constraints are removed by 
first dividing the cell(s) on the coarse side of the interface. 
Unfortunately, this division may create a further hierarchy viola- 
tion in the next cell along and so lead to a series of parasitic 
divisions that cascade through the mesh. Experience has shown 
that the third constraint leads to a particularly high number of 
parasitic divisions. 

Embedded mesh generation 
Embedded meshes are generated using the following algorithm. 
(1) Define initial mesh, or read previous mesh if performing 

solution adaptation. 
(2) Calculate connectivity arrays. 
(3) Select cells for subdivision using the geometric, block, or 

adaptation criteria. 
(4) Select any cells needed to remove hierarchy violations. 
(5) Order the selected cells so that coarse cells are always 

divided before their neighbours. 
(6) Subdivide cells, updating LTR and the i, j, k triplets as new 

nodes are added. 
(7) Generate new background fine mesh. 
(8) Ensure that new nodes on a solid boundary lie on the 

boundary and blend any changes to a boundary node's 
position into the surrounding mesh. 

(9) Repeat from (2) until all embedding criteria are satisfied. 
As cells are divided, either new nodes are created and ap- 

pended to the list of nodes, or existing nodes are connected to 
new neighbours. Existing nodes simply have their LTR values 
modified; new nodes must also be assigned an i, j, k index on 
the background mesh. This may correspond to an index that 
already exists on the background mesh; otherwise, the index is 
given a half-integer value so as not to conflict with the indices at 
any other node. Once the cell divisions have been completed, 
new lines are inserted into the background mesh at all the 
half-integer values that have been created. The i, j, k triplets at 
all nodes are then modified to account for the increased dimen- 
sions of the background mesh. The only connectivity array 
updated until the during the cell divisions is NGBN, all other 
arrays are not updated until the embedding sweep has been 
completed. 

Numerical  model 

Governing equations 
The flow and heat transfer are modelled using the steady 
Reynolds-averaged conservation equations of mass, momentum, 
and energy, together with the following perfect gas law: 

0 

0x--- 7 (puj)  = 0 

Ou i 
pUj ~Xj 

~'rij ~p 
~Xj ~Xj 

°"'-ax, axj 1-7, 
( 1)], (.,.,i 

+IL' 1-7, Ox--Tt2c,/ 
p = RpT 

where 

[ au i auj I 2 
Tij = (ILl + ILt)[ ~xj ÷ ~x i ] -- -3 ~ijpk (1) 

The laminar and turbulent Prandtl numbers in the energy 
equation are taken as 0.7 and 0.9, respectively. The turbulent 
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viscosity is modelled using the high Reynolds number k - e  
model. 

k 2 
~t = c~p - -  

pUj ~Xj ~Xj [J'l -]- ~tGk ] __~Xj -{- G - p~. 

- -  + ClG- £ - c2p- ~ (2) pUJ oxj OXj P'l + OXj 

where the generation term G is defined as: 

G = lx t ~x./ ~x i Oxj 

and the k-e model constants take the standard values: 

c~ = 0.09, ~k = 1.0, o-~ = 1.3, c 1 = 1.44, c 2 = 1.92. 

The log-law is used in the near-wall regions, whereby the 
production term in the k equation is evaluated using the logarith- 
mic velocity profile, and e is set directly from the local equilib- 
rium assumption. This places a constraint on the proximity of the 
near-wall grid nodes, which should be no closer than y+= 12. 
The average y ÷ values in each of the present calculations are in 
the range 25-50. 

Control volume assignment 

The flow equations are discretized using the upwind control 
volume algorithm of Moore (1985). In this algorithm, the control 
volumes allocated to each node are not fixed in advance but are 
allowed to adjust as the calculation proceeds so that they are 
aligned as closely as possible with the local flow direction. The 
alignment is computed by subdividing each computational cell 
into eight 1/8th subceUs and assigning each 1/8th to the cell 
vertex closest to being in its downstream direction. The division 
into 1/8th subcells is the method used to perform the finite 
volume integration and is independent of the mesh-embedding 
algorithm. Once all the 1/8th cells have been allocated, the 
control volume for each node is the agglomeration of all the 
1/8th cells assigned to it. To illustrate, the case of flow along the 
grid lines is shown in Figure 3. Here, the downstream vertices in 
each cell are allocated two 1/8th sub-cells; whereas, none is 
allocated to the upstream vertices (Figure 3a). Agglomerating the 
l /8 th  cells produces a nodal control volume that has the node at 
the center of the downstream face (Figure 3b). Over each control 

Flow 

• Nodes receiving l/8th contributions 

C, Nodes not receiving 1/8th contribution~ 
Control volume for node • 

(a) Assignment of l/8th sub~cells (b) Agglomeration of llSths to fo~n 
nodal control volume 

Figure 3 Upwind control volumes for convection-dominated 
f low along the grid lines 
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F,?w ~ ! l  
. i !  

(a) (b) 

m Hanging Node {o) Control Volumes - to be Reassigned 

m Control Volumes Assigned to Regular Nodes (o) 

Figure 4 Reassignment of hanging node control volumes for 
f low from fine to coarse side of an interface: (a) before reas- 
signment; (b) after reassignment 

volume the convective fluxes are discretized using second-order 
accurate central differencing without the need for additional 
artificial viscosity to stabilize the discretization. (Readers are 
referred to Moore for fuller details of the control volume upwind- 
ing algorithm.) 

Control volume upwinding at embedding interfaces 

It is important that the interfaces are treated implicitly so that 
they do not act as internal boundaries and retard the rate of 
convergence. Stability, accuracy, and flux conservation should 
also be maintained at the interfaces. These features are achieved 
by extending the numerical scheme proposed by one of the 
present authors (Lapworth 1993), which used stacked meshes in 
the third direction. The rationale of the interface treatment is to 
ensure that none of the 1/8th subcells is assigned to the hanging 
nodes. If the hanging nodes do not receive any control volume 
updates, there is no conflict in setting their values using linear 
interpolation. To achieve this, any 1/8th subcells that the control 
volume upwinding algorithm would prefer to assign to the hang- 
ing nodes must be reassigned to their neighbours. 

Stability is maintained by ensuring the reassignment preserves 
the upwind bias of the control volumes. Lapworth (1993) has 
shown that three generic cases arise: flow across an interface 
from fine side to coarse side; flow across an interface in the 
opposite sense; and flow along an interface. For brevity, the first 
of these cases is used to illustrate the interface treatment (see 
Lapworth for fuller details). The control volumes before and after 
reassignment are shown in Figure 4. Here, the 1/8th cells are 
reassigned to their immediate neighbours on the interface to 
produce pseudo-coarse side control volumes on the fine side of 
the interface. The interface control volumes are identical to those 
that would arise if the hanging nodes were not present and the 
mesh were simply expanding or contracting at this location. This 
preserves the upwind bias and, hence, stability of the scheme. 
Accuracy is maintained, because there is no modification to the 
control volume integrations at the interface - -  the integrations 
are simply assigned to a different node. 

Fluxes are conserved across an interface if the sum of the fine 
side fluxes balances the coarse side flux. Considering the inter- 
face shown in Figure la, the sum of the fine side integrations 
gives the following: 

4 1 

~1 ~finetp dS- = "~(q~Nl + q~nl + q~n2 + CPn3) dS_l 
face 

1 
-I- 4"  (q~N3 -I- q:~H1 -I- qDH3 -t- q:)H4) d_S3 
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1 
+ ~(%v5 + q~,~z + q°H3 + ~Pns) d-S5 

1 
"}- 4 (~N7 q- q~H5 q- ~H3 q- q0H4) d_S7 (3a) 

where dS i are the fine side face areas designated according to the 
nonhanging node they touch. Replacing the hanging node values 
by their linear interpolation rules leads to: 

4 1 

~ n e q ~  d_S= __'~'~ (9dS 1 + 3d_S 3 + 3dS_ 5 + dS_7)q~ , 

face 

1 
+ - ~  (9dS_ 3 + 3dS_ 1 + 3dS 7 + dSs)q~ 3 

1 
+ - ~  (9dS_ 5 + 3 d S  1 --I- 3dS_7 -ff dS_3)~5 

1 
+ - ~  (9dS_ 7 + 3dS_ 3 + 3d_S 5 + dS_l)q~ 7 (3b) 

Provided the face forms a parallelogram, dS_ i = 1 / 4 d S  c where 
dS_ c is the area of the coarse side face, the sum of the fine side 
fluxes becomes: 

4 1 

face face 
(3c) 

Hence, the convective fluxes are conserved for parallelogram- 
shaped interfaces. In practice, this is not a severe restriction, 
because the cells in the initial coarse H-mesh will generally be 
close to parallelpipeds, and the cell divisions do not change the 
underlying shape of the parent cell. 

The viscous fluxes require derivatives to be evaluated at the 
cell faces. The nodes used to evaluate these derivatives depend 
on the configuration of the upwinded control volumes. In particu- 
lar, the difference stencil for the discrete convection-diffusion 
operator only uses a node's immediate neighbours (including 
diagonal neighbours). Hence, considering the control volume for 
node N2 in Figure 4, the viscous derivative on the interface is 
evaluated using only the nodes NI  and N2. Otherwise, the 
difference stencil for node N2 would extend outside its immedi- 
ate neighbours. Node N1 can and does use the same evaluation, 
because N2 lies within its difference stencil. Because one-sided 
differencing is used, the viscous fluxes on an interface are 
evaluated once and distributed to the control volumes that share 
the interface. If the differencing is biased toward the coarse side, 
the fine side fluxes are each set to one-quarter of the coarse side 
flux. If the bias is toward the fine side, the coarse side flux is the 
sum of the fine side fluxes. Hence, viscous fluxes are conserved 
for all shaped interfaces. The biasing of the viscous derivatives is 
similar to a thin shear layer approximation but without a predeter- 
mined bulk flow direction. When the control volume upwinding 
is along the grid lines, the lateral faces of the control volume lie 
between the nodes (as shown in Figure 3), and central differenc- 
ing is used for the viscous derivatives. Similarly, if the flow is 
along an interface, the interface lies entirely within the interior of 
a control volume, and fluxes across the interface are not needed. 
In this case, both the convective and diffusive fluxes are inher- 
ently conserved. 

Numerical discretization scheme 
After integrating over the upwind control volumes, the discrete 
convection-diffusion equations take the following form: 

27 

~_~ a~8~i = b ~ ( 4 )  
i=1 

A 

9 ~ qZ 

// 
./ 

./ / / 

• Centre point of difference stencil 

L} Neighbouring points on same k-plane 

Neighbouring points on lower k-plane 

[ ]  Neighbouring points on upper k-plane 

Figure 5 Convection-diffusion equation difference stencil in 
the vicinity of an interface 

where q0 is the transported property. The coefficients a ~ contain 
the convective and diffusive fluxes, and b 'p is the residual of the 
equation. Away from any interfaces, the /-summation is over the 
3 X 3 X 3 difference stencil, stored in the connectivity array 
I C F N ,  surrounding the node to which the control volume is 
assigned. As shown in Figure 5, the difference stencil at an 
interface solely relates nonhanging nodes: the hanging node 
values are implicitly replaced by their linear interpolation rules 
and do not form part of the stencil. In some circumstances, the 
interface treatment introduces coefficients that lie outside the 
I C F N  stencil. Prior to solving the equations, such coefficients 
temporarily reside in difference stencils about the hanging nodes. 
During each internal sweep in the linear solver, the additional 
coefficients are evaluated and allocated to the appropriate node. 
Hence, each linear solution solves the complete set of equations, 
and none of the coefficients is lagged. 

The discrete flow equations are iterated toward convergence 
using the SIMPLER algorithm (Patankar 1980) in which the 
discrete momentum equations are substituted into the continuity 
equation in order to form a pressure correction equation used to 
update the pressure and promote the satisfaction of continuity. 
The pressure corrections are computed at the cell centres and 
then interpolated to the nodes to update the pressure. To avoid 
computing and storing a second large difference stencil, the 
pressure correction equations are solved using a defect correction 
procedure: 

7 8 
ait'Ap'i ' = b p - y~ p i C ~  • 8 u  n - I  

i=1 i=1 

8p" = 8p"-  1 + Ap" 

1 s 
n p n 

~Uregular = ~ E Ci ~Pi 
ac i=1 

n _ h n 
~Uhanging -- I~ ~Uregular ( 5 )  
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Figure 6 Film-cooling model geometry:  (a) schematic of calcu- 
lation domain;  (b) embedded mesh for 30 ° hole, SR = 4,70, 
after one solution adaptat ion 

where b p is the continuity equation residual; C" is the discrete 
continuity operator with the /-summation over the cell vertices; 
C p is the discrete pressure gradient operator with the summation 
over the eight pressure correction points surrounding the node; a~ 
is the centre point coefficient from the momentum equations; 
and, I~ h linearly interpolates for the hanging node values. The 
pressure correction matrix a p links each cell to its forward and 
backward neighbours in each of the three coordinate directions 
(as stored in NGBC). For cells on the coarse side of an interface, 
the multiple fine side neighbours are agglomerated into a single 
dummy cell whose value is the average of the fine cell values. 
The advantage of the defect approach is that all cells have eight 
vertices and all regular nodes are surrounded by eight cells 
whatever the mesh structure. On convergence of the defect 
system, Ap" ~ 0 and the pressure and velocity corrections pro- 
duce a field that satisfies continuity. 

Solution of  the numerical equations 

The discrete equations are solved using the preconditioned GM- 
RES algorithm (Saad and Schultz 1986). The preconditioners are 

tailored to the equations to be solved. The momentum equations 
are preconditioned using a Gauss-Seidel iteration. The pressure 
correction equations, which are strongly elliptic in nature, use an 
incomplete lower-upper factorization. The k-e equations, which 
are very strongly coupled through their source terms, are precon- 
ditioned using a pointwise coupled Gauss-Seidel iteration. The 
coupled system is derived by linearising the k-e equations about 
the previous solution: 

- pc2(~-/2 e 6k b k 
AV y ' a ~ + 2 p c 2 - ~ A V  Se) = b ~" (6) 

The productive source terms are omitted from the lineariza- 
tion, because they were found to cause poor convergence of 
GMRES and, hence, divergence of the nonlinear iterations. Stabil- 
ity also required the inclusion of the near wall log-law equations 
in the coupled system. 

Application to film-cooling hole entrance flows 

The numerical model is used to calculate the film-cooling en- 
trance flows measured by Byerley (1989) using apparatus of 
approximately 100 times engine scale. The test section consisted 
of a parallel-sided duct of 60 x 600 mm cross section with a 
single hole, of 22-mm diameter, in one side of the duct through 
which flow was extracted into a plenum. The hole length-to-di- 
ameter ratio was 10, compared to typical engine values of 5-10; 
and the duct-to-hole hydraulic diameter ratio was 5.45, compared 
to typical engine values of 5-15. Figure 6a shows the modelled 
section of the apparatus. Numerical results are obtained for hole 
inclination angles of 30 and 90 ° and for low, medium, and high 
suction ratios (SR). Suction ratio is the mean velocity in the hole 
divided by the peak inlet velocity. The cases modelled are 
summarized in Table 1. 

Boundary conditions 

The inlet velocity and temperature profiles are taken from Byer- 
ley's (1989) measurements. The profiles are fully developed with 
peak inlet velocities and temperatures, as shown in Table 1. The 
inlet profiles of k and ~ are set using the assumption of local 
equilibrium (i.e., turbulence production = turbulence dissipation): 

~t G = p~ 

k3/2 
3/4 (7) e = c ~  t 

where L is the eddy-viscosity length scale calculated using the 
mixing length model from Lapworth (1993). G is computed 
directly from the inlet velocities. Eliminating ~t using Equation 2 
allows k and e to be evaluated directly. 

At the duct and hole exits, the control volume upwinding 
allows the transported variables to be updated from their differ- 
ence equations. The suction ratio is controlled by specifying flow 

Table 1 Flow conditions and mesh sizes for the numerical test cases 

c~, ° SR Uct, m/s Re L Tel, K Twa,, K Grid size Rel size * 

30 1.85 8.7 25500 350.7 290.5 32472 26% 
30 4.70 8.7 25500 350.7 290.5 36555 21% 
30 7.68 8.7 25500 350.7 290.5 36555 21% 
90 1.20 9.3 25700 363.0 296.0 32941 24% 
90 3.47 8.6 27700 332.0 296.0 32068 30% 
90 7.48 9.3 26300 364.0 292.0 59456 22% 

* Relsize is the ratio of nodes in the embedded mesh to the background~ne mesh 
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rates at the exits of the hole and duct. The flow rates are achieved 
by iteratively updating the exit static pressures by a bulk amount. 
At the walls the viscous no-slip condition is used. The wall 
values of k and e are set to zero, while the near wall values are 
set consistently with a logarithmic velocity profile. The wall 
temperature is held fixed at the value shown in Table 1. A 
symmetry condition is used at the hole centreplane. 

Calculation details 

The initialization of the flow variables was found to be a crucial 
element in the stability of the numerical model. The velocities 
and pressures were initialized separately in the duct and the hole 
with a linear ramp function used to blend the two fields at the 
hole orifice. In the duct downstream of the hole, the fully 
developed inlet profiles were retained, but the flow rate was 
reduced to account for the flow extracted through the hole. 
Overall continuity balance was an important part of the initializa- 
tion strategy. The k and e fields were initialized using the same 
local equilibrium assumption as used at the duct inlet. Relaxation 
of the iterative updates was also needed to guarantee conver- 
gence. Relaxation factors of 0.6 were used on all the variables for 
the low and medium SR cases; these were reduced to 0.2 for the 
high SR cases. The initialization and relaxation strategies allowed 
convergence to be obtained in all cases without the need to start 
the calculations for one SR from the solution for a lower SR. 

The numerical calculations were declared converged when the 
rms of the changes in the flow variables between successive 
iterations were less than 1% of the changes on the first iteration. 
This typically required between 70 and 100 iterations. In practice, 
the calculations were run for a fixed number of iterations and 
then continued using a restart file if the convergence criterion had 
not been achieved. The adequacy of the convergence criterion 
was confirmed by performing an extra 50 iterations for the 90 ° 
medium SR case. These produced no discernible differences in 
the numerical solution (the maximum difference in the centreline 
heat transfer enhancement factors was less then 0.8%). The 
calculations were performed on a Silicon Graphics Indigo work- 
station with a R3000 (33 MHz) processor. A typical CPU time 
was 26.9 hours for 100 iterations on a mesh of 36,555 nodes. 

Solution adaptation strategy 

After a solution had been obtained on the initial embedded mesh, 
a solution adaptation was performed and the calculations contin- 
ued, using the previous solution, until the convergence criterion 
was again achieved. The adaptation criterion is based on differ- 
ences in a chosen flow property qb across each cell, given by 
(using the notation of Figure la): 

1 
m i ( I )  = -~ ( ( I )N2  .-~ (I)N4 -{- (1)N6 .-1- (I)N8 

- - ( I )N1 - -  ~ N 3  - -  (IDN5 - -  ( I ) N 7 )  ( 8 )  

where A~ represents the difference across the cell in the i-direc- 
tion, with corresponding definitions for the differences in the j 
and k directions. The value of Aiqb in each cell is then compared 
with the rms value of Ai~ over all the cells. 

If [AidP/rms(Ai(I)) >_ tolerance], then the cell is flagged for 
division in the /-direction. The same test is used to determine 
whether the cell should also be divided in the j and k directions. 
The tests in the i, j, and k directions are completely independent. 
Experience has shown that setting the adaptation tolerance to 
unity produces acceptable levels of refinement. This value is used 
in all the present calculations. 

In the present study, the adaptation parameter is based on 
differences in the flow velocity across a cell: 

/ A ,.2] 1 /2  
Aiqb = [(Aiu) e + (Aiu) 2 + t zaiw) ] (9) 
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Figure 7 Mesh sensi t iv i ty of  the centrel ine heat t ransfer en- 
hancement  factors: (a) comparison of embedded and back- 
ground f ine mesh solut ions; (b) compar ison of  one and two  
levels of solution adaptation 

This parameter is chosen, because it detects large gradients in 
flow velocity in the vicinity of the film cooling hole. It is also a 
good sensor for locating and resolving separated and secondary 
flow regions where changes in velocity magnitude may be less 
significant than the changes in flow direction. 

All the calculations were obtained using a single-solution 
adaptation, except the 90 ° high SR case, which used two adapta- 
tions. A typical adapted mesh is illustrated in Figure 6b. The 
mesh sizes for each of the cases modelled are summarized in 
Table 1. This table also shows the mesh sizes relative to the 
background fine mesh. Savings in node numbers of between 70 
and 80% show the significant benefits that result from mesh 
embedding. It is noted that Figure 6b shows regions of apparently 
unnecessary resolution. These are a result of the parasitic subdivi- 
sions required by the hierarchy constraints (see the Hierarchical 
constraints section). The large extent of these subdivisions is an 
undesirable consequence of the rigid hierarchical structure of the 
present model. Further work is needed to relax the present 
constraints and, hence, curtail the number of parasitic subdivi- 
sions. 

The grid dependencies in the numerical model were assessed 
by comparing the embedded mesh results for the 90 ° medium SR 
case with the results obtained using the background fine mesh. 
Figure 7a compares the centreline heat transfer enhancement 
factors from the two calculations. The embedded mesh results 
show good agreement with the fine mesh results apart from near 
the stagnation point downstream of the hole. Here, the embedded 
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SR = 7.68; vectors in terpolated onto  a coarser mesh for clar i ty 

mesh results show a small kink in enhancement factor that is 
probably the result of interfaces, and hence, larger cell sizes, in 
the vicinity of the stagnation point. However, the kink does not 
adversely affect the enhancement factors away from the stagna- 
tion point, and the mesh dependencies are felt to be acceptable 
for the present demonstrations. In the 90 ° high SR case, kinks 
near the stagnation point are much more pronounced after one 
solution adaptation than in any other case. To improve the 
solution, a further adaptation was performed. This dramatically 
improved the enhancement factors, as shown in Figure 7b. Insuf- 
ficient computer memory prevented a third adaptation. However, 
because the enhancement factors were of a similar quality as 
those shown in Figure 7a, further significant changes in the 
solution were not anticipated. 

C o m p u t a t i o n a l  r e s u l t s  

Flow field 

Figure 8 shows the computed velocity vectors on the symmetry 
plane of the 90 ° and 30 ° holes for a range of suction ratios, For 
the 90 ° hole, the vectors show how the separation bubble at the 
upstream entrance to the hole dramatically reduces in size as the 
SR is increased. The vectors also illustrate the effect SR has on 
the stagnation point of the streamline separating the flow ingested 
into the hole and the flow continuing along the duct. At SR = 
1.20, the stagnation point is very close to the downstream lip of 

the hole; at SR = 7.48, the stagnation point is at a position 0.5D 
downstream of the hole. At SR = 3.47 (not shown in Figure 8), 
the position of the stagnation point is 0.34D downstream of the 
hole. These positions show good overall agreement with Byerley's 
(1989) measurements where the stagnation point remained at the 
downstream lip of the hole for SRs up to 4.2 and then moved 
downstream until it reached the 0.5D position at SR = 5.6, where 
it remained for the higher SRs. For the 30 ° hole, the stagnation 
point shows the same trend with increasing SR as the 90 ° hole. 
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However, at the medium and high SRs (shown in Figure 8), the 
r e v e r s e  flow entering the hole produces a large separation from 
the downstream edge compared to the very small separation at 
the upstream edge. The size of the downstream separation does 
not change significantly between the medium and high SRs. 

Discharge coefficients 
Hole discharge coefficients are an important engineering parame- 
ter for the proper sizing and location of film-cooling holes. The 
discharge coefficient C d is the ratio of actual mass flow through 
the hole to the ideal flow that can pass through the hole. The 

Byerley (1989) 17 

Computed 4.32 3.33 2.92 2.56 2.17 1.92 1.71 1.57 1.46 

(a) S R = 1 . 2 0  

BI 
6.24 4.98 4.00 3.56 2.93 2.42 2.13 1.91 1.62 1.50 1.29 

/ 

I 

Cumput~ 6.24 4.98 4.00 3.56 2.93 2.42 2.13 1.91 1.62 

(b) SR = 3.47 

Figure 10 

6.32 5.02 4.20 3.56 2.80 2.35 2.02 1.76 1.59 1.45 1.36 1.27 

6.32 5.02 4.20 3.56 2.80 2.35 2.02 1.76 

(C) SR = 7.48 

Contours of heat transfer enhancement factor on the duct endwall for the 90 ° hole 
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ideal flow is evaluated using an ideal velocity at the hole exit, 
which is computed using Bernoulli 's equation: 

u~ deal= [2(P~ dee' - P 2 ) / P ]  1/2 (10) 

Where the subscript 2 denotes the hole exit station. For ideal 
flow, there are no losses in total pressure between the duct inlet 
station (subscript 1) and the hole exit, hence 

p ideal  __ (11) 02 - Pol 

To compare with Byerley's results, the C a values are plotted 
against the velocity head ratio defined as: 

Velocity head ratio: 

(Pro - PE) / ( Pm - P ] )  (12) 

Figure 9 compares the computed C d values for both the 30 
and 90 ° holes. The computations clearly exhibit the crossover in 
C d values observed by Byerley (1989). The numerical results 
also confirm Byerley's explanation for the crossover in Ca: at the 
low SR in the 90 ° hole, there is a large separated region at the 
upstream entrance that presents a significant blockage and leads 
to a low C d value. As SR increases, the separated region reduces 
in size, and although the flow also separates from the down- 
stream entrance to the hole (as a result of the stagnation point 
moving downstream), the overall blockage reduces. For the 30 ° 
hole at the low SR, the hole is angled favorably into the flow, 
and there is less blockage than in the 90 ° low SR case. As the SR 
increases, the reverse flow entering the hole has to turn through 
150 ° and the blockage is greater than for the 90 ° hole. These 
effects are clearly shown in the velocity vectors in Figure 8. 
However, at low SRs, the computed C a values are of the order of 
0.05 larger than the measurements - -  indicating that the block- 
age has been underestimated. At high SRs, the computed C d 
values are of the order of 0.1 lower than the measurements - -  
indicating that the blockage has been overestimated. For the 30 ° 
hole, this leads to the opposite trend to the experimental data, 
although measurements by Rohde et al. (1969) of a 45 ° hole 
show a reduction in C d between low and medium SRs is 
possible. The insufficient reduction in the blockage between the 
medium and high SRs is shown in Figures 8c and 8d and 
suggests some inadequacies in modelling the separation from the 
downstream lip of the hole. 

Heat t ransfer 

The heat transfer results are presented in terms of an enhance- 
ment factor EF, which is defined as the local heat transfer 
coefficient divided by the base level heat transfer coefficient for 
fully developed turbulent flow in a channel without film-cooling 
holes. The base level heat transfer is obtained from the correla- 
tion provided by Kays and Crawford (1980): 

Nu H = 0.0146 Pr °'5 Re~/8 (13) 

The Nusselt and Reynolds numbers in this correlation are based 
on the height of the duct. 

Contours of EF on the duct surface for the 90 ° hole are 
compared with the measurements in Figure 10. Byerley (1989) 
observed that the EF contours downstream of the hole change 
from having a single-lobed nature at low SRs to a double-lobed 
nature at higher SRs. This is because the downstream enhance- 
ment is in part due to the effects of boundary-layer thinning as a 
result of the downwash from the vortex pair that develop in the 
downstream duct. At low SRs, the vortices are close to the centre 
plane, and the downwash occurs in a single area that straddles the 
centreline. At higher SRs, the distance separating the vortex pair 
increases and the downwash occurs in two separate areas either 
side of the centreline leading to higher EFs just away from the 
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centreline compared to the EF on the centreline. The computed 
EF contours for the low and high SRs clearly show the transition 
from a single- to a double-lobed characteristic. The SR = 3.47 EF 
contours show a small indication of a double-lobed characteristic, 
although not as pronounced as the measurements. However, this 
case is close to the SR = 3 value that Byerley (1989) suggested 
as the crossover point between the single and double-lobed 
characteristics. 

Profiles of EF along the duct centreline for the 90 and 30 ° 
holes are compared with the measurements in Figure 11. Overall 
the agreement with the measurements is acceptable, although the 
rate of decay of EF downstream of the hole is underestimated. 
This is probably because of an underprediction of the rate of 
growth of the new boundary layer downstream of the stagnation 
point. A difficulty exacerbated by the fact that y+ values in the 
downstream region of the duct were often below the cut-off value 
of 12 for the application of wall functions. The poor modelling of 
the downstream boundary-layer growth is not unexpected with 
the high Reynolds number k-e model, and better accuracy is 
anticipated with an improved near-wall model. However, the 
numerical results are sufficiently credible to be of use in the 
engineering environment. 

Conclusions 

A three-dimensional (3-D) mesh embedding algorithm with solu- 
tion adaptation has been described. The algorithm uses upwind 
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control volumes to maintain accuracy and stability at the internal 
interfaces. Flux conservation is also maintained, provided the 
interfaces are parallelograms. A pressure correction solver is used 
and implicitness of the discrete equations is maintained at the 
interfaces by replacing hanging node values with their linear 
interpolation rules. The numerical model allows uni-, hi-, or 
tri-direction embedding and extends the previous work of Lap- 
worth (1993), which generated 3-D models by stacking topologi- 
cally similar meshes in the third direction. 

The model has been applied to a large-scale apparatus of the 
entrance flows to a cylindrical film-cooling hole. The model has 
captured many of the salient features of the flow and heat 
transfer, such as the downstream movement of the stagnation 
point and the transition to a double-lobed nature of the EF 
contours as the SR increases. Solution adaptation has been shown 
to give significant improvements in solution quality in the vicin- 
ity of the hole entrance and to be an important tool for control- 
ling spurious numerical oscillations. Overall the numerical model 
is felt to provide solutions of sufficient accuracy to be of use in 
the engineering environment. Detailed comparisons have shown 
some limitations-caused by the use of a high Reynolds number 
k-e model. Further limitations may also be also be ascribed to the 
use of H-style meshes, which produce distorted grid distributions 
within the hole. Although the embedded mesh model could 
equally well be applied to cylindrical polar meshes, which would 
be better suited to film-cooling holes, the aim of this work is to 
develop a model that can be easily incorporated into calculations 
for the flow over turbine blades. In the single nonoverlapping 
mesh structure of the present model, H-meshes allow easier 
generalization to multiple holes and to turbine blading applica- 
tions. The results of this study have shown that a relatively coarse 
representation of the cooling holes can produce solutions of 
engineering usefulness. The reductions in node numbers of be- 
tween 70 and 80%, compared to the background f ine meshes, 
produced by the mesh embedding demonstrate the flexibility of 
the numerical model and are essential for the analysis of multiple 
film-cooling holes. 
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